
Testing	Mutable	Objects

CS	5010	Program	Design	Paradigms
"Bootcamp"
Lesson	10.5

1
©	Mitchell	Wand,	2012-2015
This	work	is	licensed	under	a	Creative Commons Attribution-NonCommercial 4.0 International License.

Key	Points	for	Lesson	10.5

• State	makes	testing	harder.
• To	test	a	stateful system,	create	scenarios	that	
create	objects,	send	them	sequences	of	
messages,	and	then	check	the	observable	
outputs.

• Good	OO	designs	use	as	little	state	as	
possible.

2

State	makes	testing	harder

• You	have	to	get	things	into	the	state	you	want
• Then	observe	the	relevant	portions	of	the	final	
state	(at	just	the	right	time!)

• May	want	to	test	a	sequence	of	states
• In	real	world,	may	have	to	do	tear-down	to	
prepare	for	next	test.	
– Living	in	a	mostly-functional	world	makes	this	
unnecessary	for	us.

3

Setting	up	a	test	scenario
(begin-for-test
create objects for the test
check to see that objects are initialized correctly
(send obj1 method1 arg1 ...)
check to see that objects have the right properties
...continue through sequence of events...
)

4

Use	getter	
methods	 if	
necessary

Here	is	a	skeleton	 for	setting	up	tests	for	imperative	objects	in	
rackunit and	“extras.rkt” .
We	can	use	getter	methods	 to	pull	out	the	relevant	properties	
of	the	objects.		Remember	that	these	should	only	be	used	 for	
testing.		Using	getter	methods	on	non-observables	 as	part	of	
your	computation	 is	considered	bad	OO	design	and	should	 be	
avoided	(see	Lesson	10.1)

A		Simple	Test	Case
;; select wall, then drag
(begin-for-test
(local
;; create a wall
((define wall1 (new Wall% [pos 200])))
;; check to see that it's in the right place
(check-equal? (send wall1 for-test:get-pos) 200)
;; now select it, then drag it 40 pixels
(send wall1 after-button-down 202 100)
(send wall1 after-drag 242 180)
;; is the wall in the right place?
(check-equal? (send wall1 for-test:get-pos) 240)))

5

Another	simple	test	case
;; don't select wall, then drag
(begin-for-test
(local
;; create a wall
((define wall1 (new Wall% [pos 200])))
;; check to see that it's in the right place
(check-equal? (send wall1 for-test:get-pos) 200)
;; button-down, but not close enough
(send wall1 after-button-down 208 100)
(send wall1 after-drag 242 180)
;; wall shouldn't move
(check-equal? (send wall1 for-test:get-pos) 200)))

6

Let's	apply	this	technique	to	find	our	
bug

;; test bouncing ball
(begin-for-test

(local
((define wall1 (new Wall% [pos 200]))
(define ball1 (new Ball% [x 170][speed 50][w wall1])))

;; ball created ok?
(check-equal? (send ball1 for-test:speed) 50)
(check-equal? (send ball1 for-test:wall-pos) 200)

(send ball1 after-tick)

(check-equal? (send ball1 for-test:x) 180)
(check-equal? (send ball1 for-test:speed) -50)

))

7

This	is	pretty	much	how	
we	really	did	it.

Well,	that	worked.

We	tried	different	starting	positions
(begin-for-test

(local
((define wall1 (new Wall% [pos 200]))
(define ball1 (new Ball% [x 110][speed 50][w wall1])))

(check-equal? (send ball1 for-test:speed) 50)
(check-equal? (send ball1 for-test:wall-pos) 200)

(send ball1 after-tick)

(check-equal? (send ball1 for-test:x) 160)
(check-equal? (send ball1 for-test:speed) 50)

))

8

We	observed	 the	behavior	of	 the	system	to	generate	a	
hypothesis	about	what	starting	position	might	 fail.		
Here's	the	first	position	where	we	got	a	failure:	the	last	
test	failed	with	a	-50– the	ball	bounced	at	x=160,	not	
x=180	as	it	should	 have.

Let's	collect	more	information

• Hmm,	the	position	is	right,	but	the	speed	is	
wrong.		Our	formula	for	speed	looks	right,	but	
let's	check	it.

• We'll	add	some	test	methods	that	just	call	
next-x and	next-speed.	(Look	at	10-5-push-
model.rkt	for	details)

9

Checking	(next-speed)
(begin-for-test
(local
((define wall1 (new Wall% [pos 200]))
(define ball1 (new Ball% [x 110][speed 50][w wall1])))

(check-equal? (send ball1 for-test:speed) 50)
(check-equal? (send ball1 for-test:wall-pos) 200)

(check-equal? (send ball1 for-test:next-x) 160)
(check-equal? (send ball1 for-test:next-speed) 50)

(send ball1 after-tick)

(check-equal? (send ball1 for-test:x) 160)
(check-equal? (send ball1 for-test:speed) 50)

))

10

This	test	
passed!

What	happened?

• Hmm,	next-speed	returns	50,	but	when	
we	do	after-tick,	the	speed	of	the	resulting	
ball	is	-50.	

• What	happened?		Let's	look	at	the	code:
(define/public (after-tick)

(if selected?
this
(begin

(set! x (next-x-pos))
(set! speed (next-speed)))))

11

What	happened?
(define/public (after-tick)
(if selected?

this
(begin
(set! x (next-x-pos))
(set! speed (next-speed)))))

• Aha!	(next-speed)	depends	on	x,	but	when	we	did	the	(set!	x	
(next-x-pos))	we	changed	the	value	of	x.

• So	(next-speed)	wound	up	looking	at	the	new	value	of	x,	not	
the	old	value.

• Reversing	the	order	of	the	set!'s doesn't	help,	because	(next-
x)	also	depends	on	speed.		

• So	we	need	to	compute	both	values	before we	do	the	set!'s.		
• See	Guided	Practice	10.1	for	more	examples	like	this.

12

Here's	the	fixed	code

(define/public (after-tick)
(if selected?
this
(let ((x1 (next-x-pos))

(speed1 (next-speed)))
(begin

(set! speed speed1)
(set! x x1)))))

13

(next-x-pos)	and	(next-
speed)	both	need	the	
old	values	of	x and	

speed,	so	we	compute	
them	both	and	THEN	
change	the	values	of	x

and	speed.

See	10-6-push-model-fixed.rkt

Making	testing	easier

• Feel	free	to	introduce	help	functions	to	
generalize	repeated	patterns	of	code	in	your	
tests.

• For	these,	we	won’t	require	examples,	tests,	
etc.
– In	the	real	world,		these	might	be	as	complicated	
as	your	real	code,	and		might	need	to	be	tested	
themselves.

• Good	tests	can	help	you	play	detective.

14

What's	the	moral?

• This	example	shows	some	of	the	subtle	bugs	
that	can	arise	when	programming	with	state.

• Always	try	to	stay	as	functional	as	you	can
– note	that	our	corrected	code	was	more	like	
functional	code	than	our	original.

• Use	as	little	state	as	you	can
• Pass	values	whenever	you	can.

15

Java	Guru	on	State:
Keep	the	state	space	of	each	object	as	simple	as	possible.	If	an	

object	is	immutable,	it	can	be	in	only	one	state,	and	you	win	
big.	You	never	have	to	worry	about	what	state	the	object	is	
in,	and	you	can	share	it	freely,	with	no	need	for	
synchronization.	If	you	can't	make	an	object	immutable,	at	
least	minimize	the	amount	of	mutation	that	is	possible.	This	
makes	it	easier	to	use	the	object	correctly.

As	an	extreme	example	of	what	not	to	do,	consider	the	case	of	
java.util.Calendar.	Very	few	people	understand	its	state-
space	-- I	certainly	don't	-- and	it's	been	a	constant	source	
of	bugs	for	years.

-- Joshua	Bloch,	Chief	Java	Architect,	Google;	author,													
Effective	Java

16

Here’s	a	quotation	on	state	from	a	famous	
Java	programmer.

Module	Summary,	so	far

• We've	studied	the	difference	between	a	value
(usually	data)	and	a	state (usually	information)

• State	enables	objects	to	share	information	
with	objects	that	it	doesn't	know	about.

• State	makes	testing	and	reasoning	about	your	
program	harder.

• Use	as	little	state	as	you	can.		
• Pass	values	whenever	you	can.

17

Next	Steps

• Study	the	tests	in	10-5-push-model.rkt	and	10-
6-push-model-fixed.rkt

• If	you	have	questions	about	this	lesson,	ask	
them	on	the	Discussion	Board

• Go	on	to	the	next	lesson

18

